Verification & Validation of Autonomous Systems

Network Activities — http://www.vavas.org

Michael Fisher University of Liverpool

Sheffield, March 2017

Verification & Validation of Autonomous Systems Network

EPSRC funded Academic Network

Website: http://vavas.org

Start of funding: 1st Sept 2015, for 3 years.

Aims:

to stimulate, coordinate, promote, and disseminate academic research on the verification and validation of autonomous systems

Progress: Over 70 academic members so far.

Across all Techniques

- Simulation and Testing
- Formal Proof
- User Validation
- Autonomous Agents and Multi-Agent Systems
- Hybrid Control Systems
- Human Robot Interaction
- Probabilistic Verification
- Model-Checking
-

Across all Potential Applications

- Safety Critical Systems
- Certification of Unmanned air vehicles
- Safe (and road-worthy) driverless cars
- Autonomous robotics in nuclear/chemical/biological processes
- Human-robot teamwork, both in work and home contexts
- Deep underwater/space/underground exploration
- Autonomous ocean surface monitoring and exploration
- Autonomous sensing and control in smart cities
- Trustworthy robotic assistants for home and health-care
- Robotic diagnosis, rehabilitation, or surgery
- Autonomous satellites handling sensing/monitoring/comms
- Precision farming
- Robotic search, cleanup or rescue
- Nano-robotics

Across all *Issues*

- Legal Issues, Standards, and Certification
- Validation
- Reliability and Robustness
- Robot Ethics
- Predictability and Uncertainty
- Safety and Security
- Fault Tolerance
- Trust and Responsibility
- ...

Events so far

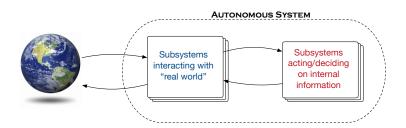
Sep 2015: Agent Verification Workshop, Liverpool

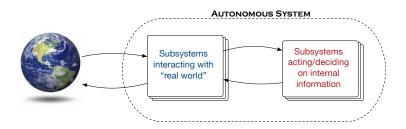
Dec 2015	: Winter School on Verification of Mobile and
	Autonomous Robots, York
Feb 2016	: Workshop on Autonomous Systems:
	Legal/Regulatory Aspects and V&V, London
Jul 2016	: Workshop on Industrial Perspectives on the V&V of
	Autonomous Systems, [Innovate UK] Sheffield
Nov 2016	: Workshop on V&V for Autonomous Road Vehicles,
	[CCAV] London
Mar 2016	: Workshop on V&V of Sensing and Control Models in
	Autonomous Systems Sheffield

Events so far

Sep 2015: Agent Verification Workshop, Liverpool

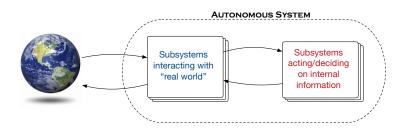
Dec	2015.	vviiller School on Verincation of Mobile and
		Autonomous Robots, York
Feb	2016:	Workshop on Autonomous Systems:
		Legal/Regulatory Aspects and V&V, London
Jul	2016:	Workshop on Industrial Perspectives on the V&V of
		Autonomous Systems, [Innovate UK] Sheffield
Nov	2016:	Workshop on V&V for Autonomous Road Vehicles,
		[CCAV] London
Mar	2016:	Workshop on V&V of Sensing and Control Models in

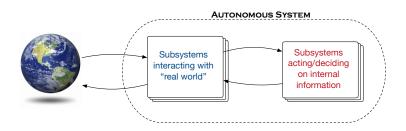

Autonomous Systems, Sheffield


Complex Systems, [Innovate UK] London

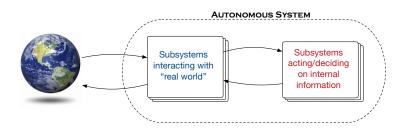
Nov 2017: Workshop on V&V of Autonomous Systems: Ethical,

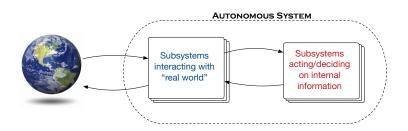
Social and Trustworthy behaviour, London


May 2017: Workshop on Software Verification and Validation for

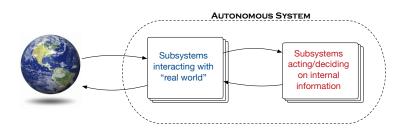


Subsystems interacting with "real world" typically involve

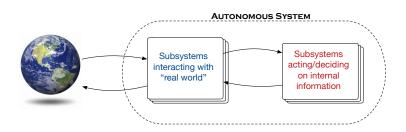

testing

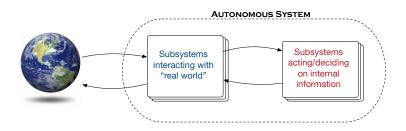

- testing
 - requires suitable models of interaction/world?

- testing
 - requires suitable models of interaction/world?
- verification using abstract models of real world



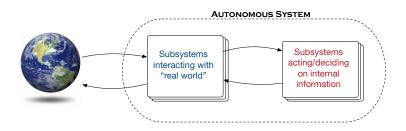
- testing
 - requires suitable models of interaction/world?
- verification using abstract models of real world
 - requires suitable stochastic/real-time abstraction?


- testing
 - requires suitable models of interaction/world?
- verification using abstract models of real world
 - requires suitable stochastic/real-time abstraction?
- verification using complex (Physics) model of real world



- testing
 - requires suitable models of interaction/world?
- verification using abstract models of real world
 - requires suitable stochastic/real-time abstraction?
- verification using complex (Physics) model of real world
 - requires hybrid (differential equations?) description?




Subsystems acting/deciding on internal information typically

verification

Subsystems acting/deciding on internal information typically

- verification
 - requires suitable/accurate models of abstract input

Subsystems acting/deciding on internal information typically

- verification
 - requires suitable/accurate models of abstract input

So:

testing for subsystems interacting with "real world"

formal verification for subsystems acting/deciding on internal information

But: Verification also requires some transparency in the way the system works — not always possible.